Invariant Metrics and Laplacians on the Siegel-jacobi Spaces

نویسنده

  • JAE-HYUN YANG
چکیده

In this paper, we compute Riemannian metrics on the Siegel-Jacobi space which are invariant under the natural action of the Jacobi group explicitly and also provide the Laplacians of these invariant metrics. These are expressed in terms of the trace form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 4 A ug 2 00 6 INVARIANT METRICS AND LAPLACIANS ON SIEGEL - JACOBI SPACE

In this paper, we compute Riemannian metrics on the Siegel-Jacobi space which are invariant under the natural action of the Jacobi group explicitly and also provide the Laplacians of these invariant metrics. These are expressed in terms of the trace form.

متن کامل

2 4 Ju l 2 00 7 INVARIANT METRICS AND LAPLACIANS ON SIEGEL - JACOBI SPACE

In this paper, we compute Riemannian metrics on the Siegel-Jacobi space which are invariant under the natural action of the Jacobi group explicitly and also provide the Laplacians of these invariant metrics. These are expressed in terms of the trace form.

متن کامل

Invariant Metrics and Laplacians on Siegel-jacobi Disk

Abstract. Let Dn be the generalized unit disk of degree n. In this paper, we find Riemannian metrics on the Siegel-Jacobi disk Dn × C (m,n) which are invariant under the natural action of the Jacobi group explicitly and also compute the Laplacians of these invariant metrics explicitly. These are expressed in terms of the trace form. We give a brief remark on the theory of harmonic analysis on t...

متن کامل

Invariant Metrics and Laplacians

Let Dn be the generalized unit disk of degree n. In this paper, we compute Riemannian metrics on Dn × C (m,n) which are invariant under the natural action of the Jacobi group explicitly and also provide the Laplacians of these invariant metrics. These are expressed in terms of the trace form.

متن کامل

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006